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LETTER TO THE EDITOR 

Period in the chaotic phase of Q2R automata 
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lnstitute for Theoretical Physics, Cologne University, D-SO00 Koln 41, Federal Republic 
of Germany 

Received 3 August 1987 

Abstract. More than 1000 h on a high-speed special computer were used to analyse the 
global limit cycle period of the Q2R automata in 2D at various energies. An exponential 
increase of the periods with system size N was found even at energies below the Curie 
temperature. Even for T+m,  i.e. in the fully chaotic regime, the paramagnetic phase of 
Q2R was found to be non-ergodic. 

The crucial question whether cellular automata, particularly the Q2R automata, can 
simulate the Ising magnet [ 13 is not yet completely answered. For low energies, constant 
oscillations in the magnetisation of the Q2R automata have been observed [2]. This 
could cause incorrect averages. Therefore, we have concentrated on the question of 
how the ‘global limit cycle’, i.e. the global period [3] of the Q2R automata depends 
on the system size for various energies in ZD. 

Since a lattice with N spins can only hold 2N different configurations (exactly two 
per lattice site: ‘spin up’ or ‘spin down’), the system will return to its initial configuration 
after at most 2N timesteps. During one timestep every spin of the whole lattice is 
updated. This definition is important, because the square lattice has to be divided into 
two sublattices, which are sequentially updated. 

The intial configuration was determined randomly with a given concentration p 
(probability) for ‘spin up’, which represented the energy. In practice we calculated 
the total number of ‘spin ups’ for the given concentration and system size and decided 
randomly their position in the lattice. We found that this method of a fixed concentra- 
tion p gives the same results but less fluctuations in less computer time compared with 
the method of deciding for each lattice site its spin direction with a given probability. 

Since our problem is quite time consuming even for small lattices, we simulated 
most of the systems on a K2 processor running at a clock frequency of 30 MHz [4]. 
We reached 2 million spin flips per second, programming directly in micro-code; two 
days were needed to find our longest period of nearly 928 million. 

For p = 0.5, i.e. T +  CO, we found the expected exponential increase of the global 
period with the system size N (see figure 1). We determined A in ~ - 2 ’ ~  at A ~ 0 . 2 7 .  
Systems at T = T, (Curie temperature) seem to have the same behaviour even though 
the increase is definitely not that strong (figure 2). Similar behaviour was found at a 
concentration p = & of initial ‘spin ups’, slightly below Curie temperature (figure 2). 
We conclude that the Curie temperature is not the critical point, below which a different 
behaviour of the global period might occur. On the other hand, the total number of 
states at a fixed energy corresponding to p = 0.5 (infinite temperatures) most likely 
varies asymptotically as 2N. Thus even in the fully chaotic regime near p = 0.5, the 
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Figure 1. Logarithmically averaged exp((ln 7 ) )  global periods, T (circles), at T = cc ( p  = 
0.5). The medians were nearly the same. 50 runs were made for each point. 
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Figure 2. Median (triangles) and logarithmically averaged (circles) global periods for 
p = pc = 0.079 55 (upper curve) and p = (lower curve). For smaller lattices at p = h, 500 
runs were made. Up to lattices with N = 200, median and logarithmic averages for p = p c  
are nearly the same. 

Q2R algorithm reaches only an exponentially small fraction -2-0.73N of all possible 
states. In other words, Q2R is not fully ergodic. Earlier work showed [3,5] already 
for lower temperatures, p < 0.08, some deviations from normal Ising models. To our 
knowledge the non-ergodicity at p = 0.5 is the first deviation in the paramagnetic phase 
of Q2R. 

We wish to thank D Stauffer, J Kertisz and J G Zabolitzky for helpful discussions, 
and SFB 125 for computer support. 



Letter to the Editor 

References 

[ l ]  Vichniac G Y 1984 Physica D 10 96 

[2] Herrmann H J 1986 J. Stat. Phys. 45 145 
[3] Herrmann H J, Carmesin H 0 and Stauffer D 1987 1. Phys. A: Mafh.  Gen. 20 4939 
[4] Deckert J, Wansleben S and Zabolitzky J G 1987 Phys. Rev. D 35 683 
[5] Lang W M and Stauffer D 1987 J. Phys. A: Marh. Gen. 20 5413 

Pomeau Y 1984 J.  Phys. A: Math. Gen. 17 U15 

L1025 


